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Abstract We consider a discrete-time stochastic growth model on the d-dimensional lattice
with non-negative real numbers as possible values per site. The growth model describes
various interesting examples such as oriented site/bond percolation, directed polymers in
random environment, time discretizations of the binary contact path process. We show the
equivalence between the slow population growth and a localization property in terms of
“replica overlap”. The main novelty of this paper is that we obtain this equivalence even for
models with positive probability of extinction at finite time. In the course of the proof, we
characterize, in a general setting, the event on which an exponential martingale vanishes in
the limit.
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1 Introduction

We write N = {0,1,2, . . .}, N
∗ = {1,2, . . .} and Z = {±x;x ∈ N}. For x = (x1, . . . , xd) ∈ R

d ,
|x| stands for the �1-norm: |x| = ∑d

i=1 |xi |. For ξ = (ξx)x∈Zd ∈ R
Z

d
, |ξ | = ∑

x∈Zd |ξx |. Let
(�, F ,P ) be a probability space. We write P [X] = ∫

X dP and P [X : A] = ∫
A

X dP

for a random variable X and an event A. For events A,B ⊂ �, A ⊂ B a.s. means that
P (A\B) = 0. Similarly, A = B a.s. means that P (A\B) = P (B\A) = 0.

1.1 The Oriented Site Percolation (OSP)

We start by discussing the oriented site percolation as a motivating example. Let ηt,y ,
(t, y) ∈ N

∗ × Z
d be {0,1}-valued i.i.d. random variables with P (ηt,y = 1) = p ∈ (0,1). The

site (t, y) with ηt,y = 1 and ηt,y = 0 are referred to respectively as open and closed. An open
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oriented path from (0,0) to (t, y) ∈ N
∗ × Z

d is a sequence {(s, xs)}t
s=0 in N × Z

d such that
x0 = 0, xt = y, |xs − xs−1| = 1, ηs,xs = 1 for all s = 1, . . . , t . For oriented percolation, it is
traditional to discuss the presence/absence of the open oriented paths to certain time-space
location. On the other hand, the model exhibits another type of phase transition, if we look
at not only the presence/absence of the open oriented paths, but also their number. Let Nt,y

be the number of open oriented paths from (0,0) to (t, y) and let |Nt | = ∑
y∈Zd Nt,y be the

total number of open oriented paths from (0,0) to the “level” t . If we regard each open ori-
ented path {(s, xs)}t

s=0 as a trajectory of a particle, then Nt,y is the number of the particles
which occupy the site y at time t .

We now note that |Nt | def.= (2dp)−t |Nt | is a martingale, since each open oriented path from
(0,0) to (t, y) branches and survives to the next level via 2d neighbors of y, each of which is
open with probability p. Thus, by the martingale convergence theorem, the following limit
exists a.s.:

|N∞| def= lim
t→∞|Nt |.

Moreover,

(i) If d ≥ 3 and p is large enough, then, P (|N∞| > 0) > 0, which means that, at least with
positive probability, the total number of paths |Nt | is of the same order as its expectation
(2pd)t as t → ∞.

(ii) If d = 1,2, then for all p ∈ (0,1), P (|N∞| = 0) = 1, which means that the total number
of paths |Nt | is of smaller order than its expectation (2pd)t a.s. as t → ∞. Moreover,
there is a non-random constant c > 0 such that |Nt | = O(exp(−ct)) a.s. as t → ∞.

This phase transition was predicted by T. Shiga in late 1990’s and the proof was given
recently in [1, 18].

We denote the density of the population by:

ρt (x) = Nt,x

|Nt |1{|Nt |>0}, t ∈ N, x ∈ Z
d . (1.1)

Here and in what follows, we adopt the following convention. For a random variable X

defined on an event A, we define the random variable X1A by X1A = X on A and X1A = 0
outside A. Interesting objects related to the density would be

ρ∗
t = max

x∈Zd
ρt (x) and Rt = |ρ2

t | =
∑

x∈Zd

ρt (x)2. (1.2)

ρ∗
t is the density at the most populated site, while Rt is the probability that two particles

picked up randomly from the total population at time t are at the same site. We call Rt the
replica overlap, in analogy with the spin glass theory. Clearly, (ρ∗

t )
2 ≤ Rt ≤ ρ∗

t . These quan-
tities convey information on localization/delocalization of the particles. Roughly speaking,
large values of ρ∗

t or Rt indicate that most of the particles are concentrated on small num-
bers of “favorite sites” (localization), whereas small values of them imply that the particles
are spread out over large number of sites (delocalization).

As applications of results in this paper, we get the following result. It says that, in the
presence of an infinite open path, the slow growth |N∞| = 0 is equivalent to a localization
property limt→∞ Rt ≥ c > 0. Here, and in what follows, a constant always means a non-
random constant.



600 N. Yoshida

Theorem 1.1.1

(a) If P (|N∞| > 0) > 0, then
∑

t≥1 Rt < ∞ a.s.

(b) If P (|N∞| = 0) = 1, then there exists a constant c > 0 such that:

{|Nt | > 0 for all t ∈ N} =
{

lim
t→∞ Rt ≥ c

}
a.s. (1.3)

Note that P (|N∞| = 0) = 1 for all p ∈ (0,1) if d ≤ 2. Thus, (1.3) in particular means
that, if d ≤ 2, the path localization limt→∞ Rt ≥ c occurs a.s. on the event of percolation.
Theorem 1.1.1 is shown at the end of Sect. 1.4 as a consequence of more general results for
linear stochastic evolutions.

1.2 The Linear Stochastic Evolution

We now introduce the framework of this article. Let At = (At,x,y)x,y∈Zd , t ∈ N
∗ be a se-

quence of random matrices on a probability space (�, F ,P ) such that:

A1,A2, . . . are i.i.d. (1.4)

Here are the set of assumptions we assume for A1:

A1 is not a constant matrix. (1.5)

A1,x,y ≥ 0 for all x, y ∈ Z
d . (1.6)

The columns {A1,·,y}y∈Zd are independent. (1.7)

P [A3
1,x,y] < ∞ for all x, y ∈ Z

d . (1.8)

A1,x,y = 0 a.s. if |x − y| > rA for some non-random rA ∈ N. (1.9)

(A1,x+z,y+z)x,y∈Zd
law= A1 for all z ∈ Z

d . (1.10)

The set

{

x ∈ Z
d;

∑

y∈Zd

ax+yay 	= 0

}

contains a linear basis of R
d ,

where ay = P [A1,0,y]. (1.11)

Depending on the results we prove in the sequel, some of these conditions can be relaxed.
However, we choose not to bother ourselves with the pursuit of the minimum assumptions
for each result.

We define a Markov chain (Nt )t∈N with values in [0,∞)Z
d

by:
∑

x∈Zd

Nt−1,xAt,x,y = Nt,y, t ∈ N
∗. (1.12)

In this article, we suppose that the initial state N0 is given by “a single particle at the origin”:

N0 = (
δ0,x

)
x∈Zd . (1.13)

Here and in what follows, δx,y = 1{x=y} for x, y ∈ Z
d . If we regard Nt ∈ [0,∞)Z

d
as a row

vector, (1.12) can be interpreted as:

Nt = N0A1A2 · · ·At, t = 1,2, . . . .
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The Markov chain defined above can be thought of as the time discretization of the linear
particle system considered in the last chapter in T. Liggett’s book [11, Chap. IX]. Thanks to
the time discretization, the definition is considerably simpler here. Though we do not assume
in general that (Nt )t∈N takes values in N

Z
d
, we refer Nt,y as the “number of particles” at

time-space (t, y), and |Nt | as the “total number of particles” at time t .
We now see that various interesting examples are included in this framework. We recall

the notation ay from (1.11).

• Generalized oriented site percolation (GOSP): We generalize OSP as follows. Let ηt,y ,
(t, y) ∈ N

∗ × Z
d be {0,1}-valued i.i.d. random variables with P (ηt,y = 1) = p ∈ [0,1]

and let ζt,y , (t, y) ∈ N
∗ × Z

d be another {0,1}-valued i.i.d. random variables with
P (ζt,y = 1) = q ∈ [0,1], which are independent of ηt,y ’s. To exclude trivialities, we as-
sume that either p or q is in (0,1). We refer to the process (Nt )t∈N defined by (1.12)
with:

At,x,y = 1|x−y|=1ηt,y + δx,yζt,y

as the generalized oriented site percolation (GOSP). Thus, the OSP is the special case
(q = 0) of GOSP. The covariances of (At,x,y)x,y∈Zd can be seen from:

ay = p1{|y|=1} + qδy,0,

P [At,x,yAt,̃x,y] =
⎧
⎨

⎩

q if x = x̃ = y,
p if |x − y| = |̃x − y| = 1,
ay−xay−x̃ if otherwise.

(1.14)

In particular, we have |a| = 2dp + q (recall that |a| = ∑
y ay ).

• Generalized oriented bond percolation (GOBP): Let ηt,x,y , (t, x, y) ∈ N
∗ × Z

d × Z
d be

{0,1}-valued i.i.d.random variables with P (ηt,x,y = 1) = p ∈ [0,1] and let ζt,y , (t, y) ∈
N

∗ × Z
d be another {0,1}-valued i.i.d. random variables with P (ζt,y = 1) = q ∈ [0,1],

which are independent of ηt,y ’s. We refer to the process (Nt )t∈N defined by (1.12) with:

At,x,y = 1{|x−y|=1}ηt,x,y + δx,yζt,y

as the generalized oriented bond percolation (GOBP). We call the special case q = 0
oriented bond percolation (OBP). To interpret the definition, let us call the pair of
time-space points 〈(t − 1, x), (t, y)〉 a bond if |x − y| ≤ 1, (t, x, y) ∈ N

∗ × Z
d × Z

d .
A bond 〈(t − 1, x), (t, y)〉 with |x − y| = 1 is said to be open if ηt,x,y = 1, and a bond
〈(t − 1, y), (t, y)〉 is said to be open if ζt,y = 1. For GOBP, an open oriented path from
(0,0) to (t, y) ∈ N

∗ × Z
d is a sequence {(s, xs)}t

s=0 in N × Z
d such that x0 = 0, xt = y

and bonds 〈(s − 1, xs−1), (s, xs)〉 are open for all s = 1, . . . , t . If N0 = (δ0,y)y∈Zd , then,
the number of open oriented paths from (0,0) to (t, y) ∈ N

∗ × Z
d is given by Nt,y .

The covariances of (At,x,y)x,y∈Zd can be seen from:

ay = p1{|y|=1} + qδy,0, P [At,x,yAt,̃x,y] =
{

ay−x if x = x̃,
ay−xay−x̃ if otherwise.

(1.15)

In particular, we have |a| = 2dp + q .
• Directed polymers in random environment (DPRE): Let {ηt,y; (t, y) ∈ N

∗ × Z
d} be i.i.d.

with exp(λ(β))
def= P [exp(βηt,y)] < ∞ for any β ∈ (0,∞). The following expectation is



602 N. Yoshida

called the partition function of the directed polymers in random environment:

Nt,y = P 0
S

[

exp

(

β

t∑

u=1

ηu,Su

)

: St = y

]

, (t, y) ∈ N
∗ × Z

d ,

where ((St )t∈N,P x
S ) is the simple random walk on Z

d . We refer the reader to a review
paper [6] and the references therein for more information. Starting from N0 = (δ0,x)x∈Zd ,
the above expectation can be obtained inductively by (1.12) with:

At,x,y = 1|x−y|=1

2d
exp(βηt,y).

The covariances of (At,x,y)x,y∈Zd can be seen from:

ay = eλ(β)1{|y|=1}
2d

, P [At,x,yAt,̃x,y] = eλ(2β)−2λ(β)ay−xay−x̃ . (1.16)

In particular, we have |a| = eλ(β).
• The binary contact path process (BCPP): The binary contact path process is a continuous-

time Markov process with values in N
Z

d
, originally introduced by D. Griffeath [9]. In this

article, we consider a discrete-time variant as follows. Let

{ηt,y = 0,1; (t, y) ∈ N
∗ × Z

d}, {ζt,y = 0,1; (t, y) ∈ N
∗ × Z

d},
{et,y; (t, y) ∈ N

∗ × Z
d}

be families of i.i.d. random variables with P (ηt,y = 1) = p ∈ (0,1], P (ζt,y = 1) = q ∈
[0,1], and P (et,y = e) = 1

2d
for each e ∈ Z

d with |e| = 1. We suppose that these three

families are independent of each other. Starting from an N0 ∈ N
Z

d
, we define a Markov

chain (Nt )t∈N with values in N
Z

d
by:

Nt+1,y = ηt+1,yNt,y−et+1,y
+ ζt+1,yNt,y, t ∈ N.

We interpret the process as the spread of an infection, with Nt,y infected individuals at
time t at the site y. The ζt+1,yNt,y term above means that these individuals remain infected
at time t +1 with probability q , and they recover with probability 1−q . On the other hand,
the ηt+1,yNt,y−et+1,y

term means that, with probability p, a neighboring site y − et+1,y is
picked at random (say, the wind blows from that direction), and Nt,y−et+1,y

individuals at
site y are infected anew at time t + 1. This Markov chain is obtained by (1.12) with:

At,x,y = ηt,y1et,y=y−x + ζt,yδx,y .

The covariances of (At,x,y)x,y∈Zd can be seen from:

ay = p1{|y|=1}
2d

+ qδ0,y , P [At,x,yAt,̃x,y] =
{

ay−x if x = x̃,
δx,yqay−x̃ + δx̃,yqay−x if x 	= x̃.

(1.17)
In particular, we have |a| = p + q .

Remark The branching random walk in random environment considered in [10, 15–17] can
also be considered as a “close relative” to the models considered here, although it does not
exactly fall into our framework.
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1.3 The Regular and Slow Growth Phases

We now recall the following facts and notion from [18, Lemmas 1.3.1 and 1.3.2]. Let Ft be
the σ -field generated by A1, . . . ,At .

Lemma 1.3.1 Define Nt = (Nt,x)x∈Zd by:

Nt,x = |a|−tNt,x . (1.18)

(a) (|Nt |, Ft )t∈N is a martingale, and therefore, the following limit exists a.s.

|N∞| = lim
t→∞|Nt |. (1.19)

(b) Either

P [|N∞|] = 1 or 0. (1.20)

Moreover, P [|N∞|] = 1 if and only if the limit (1.19) is convergent in L
1(P ).

We will refer to the former case of (1.20) as regular growth phase and the latter as slow
growth phase.

The regular growth means that, at least with positive probability, the growth of the “total
number” |Nt | of particles is of the same order as its expectation |a|t |N0|. On the other hand,
the slow growth means that, almost surely, the growth of |Nt | is slower than its expectation.

We now recall from [1] and [18, Theorems 3.1.1 and 3.2.1] the following criterion for
slow growth phase.

Proposition 1.3.2 P (|N∞| = 0) = 1 if d = 1,2, or if:
∑

y∈Zd

P
[
A1,0,y lnA1,0,y

]
> |a| ln |a|. (1.21)

The condition (1.21) roughly says that the matrix A1 is “random enough”. For DPRE,
(1.21) is equivalent to βλ′(β) − λ(β) > ln(2d).

1.4 The Results

We introduce the following additional condition, which says that the entries of the matrix
A1 are positively correlated in the following weak sense: there is a constant γ ∈ (1,∞) such
that:

∑

x,̃x,y∈Zd

(
P [A1,x,yA1,̃x,y] − γ ay−xay−x̃

)
ξxξx̃ ≥ 0 (1.22)

for all ξ ∈ [0,∞)Z
d

such that |ξ | < ∞.

Remark Clearly, (1.22) is satisfied if there is a constant γ ∈ (1,∞) such that:

P [A1,x,y,A1,̃x,y] ≥ γ ay−xay−x̃ for all x, x̃, y ∈ Z
d . (1.23)

For OSP and DPRE, we see from (1.14) and (1.16) that (1.23) holds with:

γ = 1/p and exp(λ(2β) − 2λ(β))
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respectively for OSP and DPRE. For GOSP, GOBP and BCPP, (1.23) is no longer true.
However, one can check (1.22) for them with:

γ = 1 +
{ 2dp(1−p)+q(1−q)

(2dp+q)2 for GOSP and GOBP,

p(1−p)+q(1−q)

(p+q)2 for BCPP

(see [18, remarks after Theorem 3.2.1]).
We define the density ρt (x) and the replica overlap Rt in the same way as (1.1) and (1.2).

We first show that, on the event of survival, the slow growth is equivalent to the localiza-
tion:

Theorem 1.4.1 Suppose (1.22).

(a) If P (|N∞| > 0) > 0, then
∑

t≥0 Rt < ∞ a.s.
(b) If P (|N∞| = 0) = 1, then

{survival} =
{∑

t≥0

Rt = ∞
}

a.s. (1.24)

where {survival} def= {|Nt | > 0 for all t ∈ N}. Moreover, there exists a constant c > 0 such
that almost surely,

|Nt | ≤ exp

(

−c
∑

1≤s≤t−1

Rs

)

for all large enough t ’s. (1.25)

Remark As can be seen from the proof (cf. Proposition 2.1.1(a)), (1.24) is true even without
assuming (1.22) and with (1.8) replaced by a weaker assumption:

P [A2
1,x,y] < ∞ for all x, y ∈ Z

d . (1.26)

Theorem 1.4.1 says that, conditionally on survival, the slow growth |N∞| = 0 is equivalent
to the localization

∑
t≥0 Rt = ∞. We emphasize that this is the first case in which a result

of this type is obtained for models with positive probability of extinction at finite time (i.e.,
P (|Nt | = 0) > 0 for finite t ). Similar results have been known before only in the case where
no extinction at finite time is allowed, i.e., |Nt | > 0 for all t ≥ 0, e.g., [4, Theorem 1.1],
[5, Theorem 1.1], [7, Theorem 2.3.2], [10, Theorem 1.3.1]. The argument in the previous
literature is roughly to show that

− ln |Nt | 
t−1∑

u=0

Ru a.s. as t → ∞ (1.27)

by using Doob’s decomposition of the supermartingale ln |Nt | (“” above means the as-
ymptotic upper and lower bounds with positive multiplicative constants). This argument
does not seem to be directly transportable to the case where the total population may get
extinct at finite time, since ln |Nt | is not even defined. To cope with this problem, we first
characterize, in a general setting, the event on which an exponential martingale vanishes in
the limit (Proposition 2.1.2). We then apply this characterization to the martingale |Nt |. See
also [13] for the application of this idea to the continuous-time setting.
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Next, we present a result which says that, under a mild assumption, we can replace

∑

t≥0

Rt = ∞

in (1.24) by a stronger localization property:

lim
t→∞ Rt ≥ c,

where c > 0 is a constant. To state the theorem, we introduce some notation related to the
random walk associated to our model. Let ((St )t∈N,P x

S ) be the random walk on Z
d such

that:

P x
S (S0 = x) = 1 and P x

S (S1 = y) = ay−x/|a| (1.28)

and let (S̃t )t∈N be its independent copy. We then define:

πd = P 0
S ⊗ P 0

S̃
(St = S̃t for some t ≥ 1). (1.29)

Then, by (1.11),

πd = 1 for d = 1,2 and πd < 1 for d ≥ 3. (1.30)

Theorem 1.4.2 Suppose (1.22) and either of

(a) d = 1,2,
(b) P (|N∞| = 0) = 1 and

γ >
1

πd

, (1.31)

where γ and πd are from (1.22) and (1.29).

Then, there exists a constant c > 0 such that:

{survival} =
{

lim
t→∞ Rt ≥ c

}
a.s. (1.32)

This result generalizes [4, Theorem 1.2] and [5, Proposition 1.4(b)], which are obtained
in the context of DPRE. Similar results are also known for branching random walk in random
environment [10, Theorem 1.3.2]. To prove Theorem 1.4.2, we will use the argument which
was initially applied to DPRE by P. Carmona and Y. Hu in [4] (see also [10]). What is new
in the present paper is to carry the arguments in the above mentioned papers over to the case
where the extinction at finite time is possible. This will be done in Sect. 3.1.

Remarks (1) We prove (1.32) by way of the following stronger estimate:

lim
t↗∞

∑t

s=0 R3/2
s

∑t

s=0 Rs

≥ c1, a.s.

for some constant c1 > 0. This in particular implies the following quantitative lower bound
on the number of times at which the replica overlap is larger than a certain positive number:

lim
t↗∞

∑t

s=0 1{Rs≥c2}
∑t

s=0 Rs

≥ c3, a.s.
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where c2 and c3 are positive constants. (The inequality r3/2 ≤ 1{r ≥ c}+√
cr for r, c ∈ [0,1]

can be used here.)
(2) (1.32) is in contrast with the following delocalization result by M. Nakashima [14]:

if d ≥ 3 and supt≥0 P [|Nt |2] < ∞, then,

Rt = O(t−d/2) in P (·||N∞| > 0)-probability.

See also [12] for the continuous-time case and [15, 17] for the case of branching random
walk in random environment.

Finally, we state the following variant of Theorem 1.4.2, which says that even for d ≥ 3,
(1.31) can be dropped at the cost of some alternative assumptions. Following M. Birkner
[2, p. 81, (5.1)], we introduce the following condition:

sup
t∈N,x∈Zd

P 0
S (St = x)

P 0
S ⊗ P 0

S̃
(St = S̃t )

< ∞, (1.33)

which is obviously true for the symmetric simple random walk on Z
d .

Theorem 1.4.3 Suppose d ≥ 3, (1.22), (1.33) and that there exist mean-one i.i.d. random
variables ηt,y , (t, y) ∈ N × Z

d such that:

At,x,y = ηt,yay−x. (1.34)

Then, the slow growth (P (|N∞| = 0) = 1) implies that there exists a constant c > 0 such
that (1.32) holds.

Note that OSP and DPRE for d ≥ 3 satisfy all the assumptions for Theorem 1.4.3. The
proof of Theorem 1.4.3 is based on Theorem 1.4.2 and a criterion for the regular growth
phase, which is essentially due to M. Birkner [3]. These will be explained in Sect. 3.4.

Proof of Theorem 1.1.1 The theorem follows from Theorems 1.4.1 and 1.4.3. �

2 Proofs of Theorem 1.4.1

We will prove part (b) first, and then part (a).

2.1 An Abstraction of Theorem 1.4.1(b)

We will prove Theorem 1.4.1(b) in the following generalized form, where the slow glowth
(P (|N∞| = 0) = 1) is not assumed in advance:

Proposition 2.1.1

(a) Even without assuming (1.22) and with (1.8) replaced by (1.26), it holds that

{|N∞| > 0} ⊃
{

survival,
∑

t≥0

Rt < ∞
}

a.s. (2.1)
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(b) Suppose (1.8) and (1.22). Then, there exists a constant c > 0 such that (1.25) holds a.s.
on the event {∑t≥0 Rt = ∞}. In particular, the inclusion opposite to (2.1) holds true.

We will prove Proposition 2.1.1 via the following observation for general exponential
martingales, which may be of independent interest.

Let (Mt)t∈N be a square-integrable martingale on a filtered probability space (�, F ,P ;
(Ft )t∈N). We denote its predictable quadratic variation by:

〈M〉t =
∑

1≤u≤t

P [(�Mu)
2|Fu−1].

Here, and in what follows, we write �at = at − at−1 (t ≥ 1) for a sequence (at )t∈N (random
or non-random).

Proposition 2.1.2 Let (Yt )t∈N be a mean-zero square-integrable martingale on a filtered
probability space (�, F ,P ; (Ft )t∈N) such that −1 ≤ �Yt a.s. for all t ∈ N

∗ and let

Xt =
t∏

s=1

(1 + �Ys). (2.2)

(a) Suppose that

sup
t≥1

P [(�Yt )
2|Ft−1] ≤ c2

1 a.s. (2.3)

for some constant c1 ∈ (0,∞). Then,

{X∞ > 0} ⊃ S ∩ {〈Y 〉∞ < ∞} a.s. (2.4)

where S = {Xt > 0 for all t ≥ 0}.
(b) Suppose that there exists a constant c2 ∈ (0,∞) such that for all t ∈ N

∗:

Yt ∈ L3(P ) and P [(�Yt )
3|Ft−1] ≤ c2P [(�Yt)

2|Ft−1] a.s. (2.5)

Then, for any c3 ∈ (0, 1
4 ),

Xt ≤ exp (−c3〈Y 〉t ) for all large enough t ’s (2.6)

a.s. on the event {〈Y 〉∞ = ∞}. In particular, the inclusion opposite to (2.4) holds true.

Remark As will be seen from the proof, the following assumption works as well for Propo-
sition 2.1.2(b): there exist q ∈ (2,∞) and c2 ∈ (0,∞) such that for all t ∈ N

∗:

Yt ∈ Lq(P ) and P [|�Yt |q |Ft−1] ≤ c
q−2
2 P [(�Yt )

2|Ft−1] a.s.

Although this condition may look better than (2.5) for q < 3, (2.5) works more effectively
for our application. The point is that (2.5) is written in terms of (�Yt )

3, rather than |�Yt |3.

We postpone the proof of Proposition 2.1.2 (Sect. 2.2) to finish the proof of Proposi-
tion 2.1.1.
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Proof of Proposition 2.1.1 We apply Proposition 2.1.2 to Xt = |Nt |. Then, it is easy to see
that (2.2) holds with:

�Yt = 1

|a|
∑

x,y∈Zd

ρt−1(x)At,x,y − 1.

Moreover, it was shown in the proof of [18, Lemma 3.2.2] that there are constants ci ∈
(0,∞) (i = 1,2) such that:

(1) P [(�Yt )
p|Ft−1] ≤ c1 Rt−1, p = 2,3

(2) P [(�Yt )
2|Ft−1] ≥ c2 Rt−1

((1.22) is used only for (2)). Therefore, Proposition 2.1.2 immediately leads to Theo-
rem 1.4.1. �

2.2 Proof of Proposition 2.1.2

Let (Mt)t∈N be a square-integrable martingale defined on a filtered probability space. In this
paper, we will repeatedly exploit the following well-known facts (e.g., [8, pp. 252–253]):

{〈M〉∞ < ∞} ⊂ {Mt converges as t → ∞} a.s., (2.7)

{〈M〉∞ = ∞} ⊂
{

lim
t→∞

Mt

〈M〉t = 0

}

a.s. (2.8)

To prove Proposition 2.1.2, we will use the following lemma, which is a generalization
of the Borel–Cantelli lemma, and is also used in the proof of Lemma 3.1.2.

Lemma 2.2.1 Let (Zt )t∈N be an integrable, adapted process defined on a filtered probability
space (�, F ,P ; (Ft )t∈N) and let:

A0 = 0, At =
∑

1≤s≤t

P [�Zs |Fs−1], t ∈ N
∗.

(a) Suppose that there exists a constant c1 ∈ (0,∞) such that:

�Zt − P [�Zt |Ft−1] ≥ −c1 a.s. for all t ∈ N
∗. (2.9)

Then,

{
lim
t→∞Zt = ∞

}
=

{

lim
t→∞ Zt = ∞, lim

t→∞
At

Zt

≥ 1

}

⊂
{

sup
t≥1

At = ∞
}

a.s. (2.10)

(b) Suppose that {Zt }t∈N ⊂ L2(P ) and that there exists a constant c2 ∈ (0,∞) such that:

var(�Zt |Ft−1) ≤ c2P [�Zt |Ft−1] a.s. for all t ∈ N
∗, (2.11)

where var(�Zt |Ft−1) = P [(�Zt)
2|Ft−1] − P [�Zt |Ft−1]2. Then,

{
lim
t→∞At = ∞

}
=

{

lim
t→∞At = ∞, lim

t→∞
Zt

At

= 1

}

⊂
{

lim
t→∞ Zt = ∞

}
a.s. (2.12)
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Proof (a) It is enough to show that

(1)
{

lim
t→∞Zt = ∞

}
⊂

{

lim
t→∞

At

Zt

≥ 1

}

.

Define Mt = Zt − At , so that (M·) is a martingale whose increments are bounded below
by −c1. Then, it is standard (e.g. the proof of [8, p. 236, (3.1)]) that

(2) P (C ∪ D−) = 1,

where

C = {Mt converges as t → ∞} and D− =
{

inf
t∈N

Mt = −∞
}
.

Now, by writing

At

Zt

= 1 − Mt

Zt

,

(1) follows immediately from (2).
(b) It is enough to show that

(3)
{

lim
t→∞At = ∞

}
⊂

{

lim
t→∞

Zt

At

= 1

}

.

Here, M· is square-integrable. Since

∣
∣
∣
∣
Zt

At

− 1

∣
∣
∣
∣ =

∣
∣
∣
∣
Mt

At

∣
∣
∣
∣,

we have
{

lim
t→∞At = ∞, 〈M〉∞ < ∞

}
(2.7)⊂

{

lim
t→∞

Zt

At

= 1

}

.

On the other hand, on the event {〈M〉∞ = ∞}, we have

∣
∣
∣
∣
Mt

At

∣
∣
∣
∣

(2.11)≤ c2
|Mt |
〈M〉t

(2.8)−→ 0 as t → ∞.

These prove (3). �

Remark Similarly as Lemma 2.2.1(a), we can show the following variant of Lemma 2.2.1(b).
Suppose that there exists a constant c3 ∈ (0,∞) such that:

�Zt − P [�Zt |Ft−1] ≤ c3 a.s. for all t ∈ N
∗.

Then,

{
lim
t→∞ At = ∞

}
=

{

lim
t→∞At = ∞, lim

t→∞
Zt

At

≥ 1

}

⊂
{

sup
t≥1

Zt = ∞
}

a.s.
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Lemma 2.2.2 Let (Yt )t∈N∗ be as in Proposition 2.1.2(b). Then,

{〈Y 〉∞ = ∞} ⊂
{

lim
t→∞

∑
s≤t f (�Ys)

〈Y 〉t ≥ 1

}

a.s. (2.13)

where f (u) = u2

2+u
, u ≥ −1.

Proof We first prepare elementary estimates. Let U be a r.v. such that −1 ≤ U a.s. Since
0 ≤ f (u) ∨ f (u)2 ≤ u2, we have

(1) P
[
f (U) ∨ f (U)2

] ≤ P [U 2].
Suppose further that P [U 3] ≤ cP [U 2]. Then,

(2) P [U 2] ∨ P [f (U)2] ≤ (2 + c)P [f (U)].
This can be seen as follows. We have

P [U 2]2 = P

[
U√

2 + U
U

√
2 + U

]2

≤ P
[
f (U)

]
P

[
U 2(2 + U)

]

= P
[
f (U)

]
(2P [U 2] + P [U 3]) ≤ (2 + c)P [f (U)]P [U 2],

which proves P [U 2] ≤ (2 + c)P [f (U)]. On the other hand,

P [f (U)2] (1)≤ P [U 2] ≤ (2 + c)P [f (U)].
By (1)–(2) above, applied to U = �Yt and the measure P ( · |Ft−1), we see that

(3) D
def= {〈Y 〉∞ = ∞} =

{∑

s≥1

P [f (�Ys)|Fs−1] = ∞
}

a.s.

We see from (2) that Zt = ∑
s≤t f (�Ys) satisfies (2.11). Therefore,

D
(3),(2.12)⊂

{

lim
t→∞

∑
s≤t f (�Ys)

∑
1≤s≤t P [f (�Ys)|Fs−1] = 1

}

a.s.

Thus, (2.13) follows from this and (1). �

Proof of Proposition 2.1.2(a) We will prove that

(1) S ∩ {〈Y 〉∞ < ∞} ⊂ {exp(−Y∞)X∞ > 0} a.s.

We get (2.4) from this and (2.7). To prove (1), note that

(2) exp(−Yt )Xt =
t∏

u=1

(1 + �Yu) exp(−�Yu)

and that

(3) 0 ≤ 1 − (1 + �Yu) exp(−�Yu) ≤ e

2
(�Yu)

2,
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since �Yu ≥ −1. By (2.3), Zt = ∑
s≤t (�Ys)

2 satisfies (2.9). Thus, we have by (2.10) that

(4) {〈Y 〉∞ < ∞} ⊂
{∑

u≥1

(�Yu)
2 < ∞

}

a.s.

Thus, we get (1) from (2)–(4).
(b) We have (1 + u)e−u ≤ e−f (u)/4 for u ≥ −1, where f (u) = u2

2+u
. Thus,

(5) (1 + �Yu) exp(−�Yu) ≤ exp(−f (�Yu)/4) for all u ≥ 1.

Let 0 < c3 < c4 < 1
4 . Then, for t large enough, a.s. on the event {〈Y 〉∞ = ∞},

t∏

u=1

(1 + �Yu) exp(−�Yu)
(5)≤ exp

(

−
t∑

u=1

f (�Yu)/4

)
(2.13)≤ exp (−c4〈Y 〉t )

(2.8)≤ exp (−Yt − c3〈Y 〉t ) ,

which, via (2), proves (2.6). �

2.3 Proof of Theorem 1.4.1(a)

If P (|N∞| > 0) > 0, then,

{survival} = {|N∞| > 0} a.s.

This can be seen easily by translating the argument in [9, p. 701, proof of “Proposition”]. We
see from this and Proposition 2.1.1 that

∑
t≥0 Rt < ∞ a.s. on the event of survival, while∑

t≥0 Rt < ∞ is obvious outside the event of survival.

3 Proofs of Theorems 1.4.2 and 1.4.3

3.1 The Argument by P. Carmona and Y. Hu

For f,g : Z
d → [0,∞), we define their convolution f ∗ g by:

(f ∗ g)(x) =
∑

y∈Zd

f (x − y)g(y), x ∈ Z
d .

For the notational convenience, we also write a(y) for ay . We define:

bt = b ∗ · · · ∗ b︸ ︷︷ ︸
t

, t ∈ N
∗, where b(x) = 1

|a|2
∑

y∈Zd

a(y)a(y − x).

To interpret this, let (S̃t )t∈N be the independent copy of ((St )t∈N,P 0
S ), cf. (1.28). Then,

bt (x) = P 0
S ⊗ P 0

S̃
(St − S̃t = x).
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Therefore, by (1.11)

1 +
∑

t≥1

bt (0) = 1

1 − πd

{= ∞ if d = 1,2
< ∞ if d ≥ 3.

(3.1)

We first note that there are ε > 0 and t0 ∈ N such that:

∑

1≤t≤t0

bt (0) ≥ 1 + ε

γ − 1
. (3.2)

For d = 1,2, we take ε = 1. Then, (3.2) holds for t0 large enough, since
∑

t≥1 bt (0) = ∞.
For d ≥ 3, the assumptions (1.31) and (3.1) imply (3.2) for small enough ε > 0 and large
enough t0. We now fix ε > 0 and t0 and define:

Xt = 〈g ∗ ρt , ρt 〉, where g =
t0∑

s=1

bs. (3.3)

(The bracket 〈·, ·〉 stands for the inner product of �2(Zd).) Note that 0 ≤ g ∈ �1(Zd) and that

|Xt | ≤ |(g ∗ ρt )
2|1/2|ρ2

t |1/2 ≤ |g|Rt . (3.4)

(Recall again that |f | = ∑
x |f (x)| for f : Z

d → R.) Let:

Xt = Mt + At

be Doob’s decomposition, defined by:

A0 = 0, �At = P [�Xt |Ft−1] for t ∈ N
∗. (3.5)

Proof of Theorem 1.4.2 is based on the following two lemmas.

Lemma 3.1.1 There are constants c1, c2 ∈ (0,∞) such that:

At ≥ c1

∑

0≤u≤t−1

Ru − c2

∑

0≤u≤t−1

R3/2
u for all t ∈ N

∗.

Lemma 3.1.2
{∑

u≥0

Ru = ∞
}

⊂
{

lim
t→∞

Mt
∑

0≤u≤t−1 Ru

= 0

}

a.s.

Proof of Theorem 1.4.2 We may focus on the event D = {∑u≥0 Ru = ∞}. It follows
from (3.4) and Lemma 3.1.2 that

lim
t→∞

At
∑

0≤u≤t−1 Ru

= 0 a.s. on D

and hence from Lemma 3.1.1 that

lim
t→∞

∑
0≤u≤t−1 R3/2

u
∑

0≤u≤t−1 Ru

≥ c1

c2
a.s. on D.

This, together with (1.24), proves Theorem 1.4.2. �
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3.2 Proof of Lemma 3.1.1

The following technical lemma is an extension of [10, Lemma 3.1.1] to the case where the
random variables Ui ≥ 0 may vanish with positive probability.

Lemma 3.2.1 Let Ui ≥ 0, 1 ≤ i ≤ n (n ≥ 2) be independent random variables such that:

P [U 3
i ] < ∞ for i = 1, . . . , n and

n∑

i=1

mi = 1,

where mi = P [Ui]. Then, with U = ∑n

i=1 Ui ,

P

[
U1U2

U 2
: U > 0

]

≥ m1m2 − 2m2 var(U1) − 2m1 var(U2), (3.6)

P

[
U 2

1

U 2
: U > 0

]

≥ P [U 2
1 ] (1 + 2m1) − 2P [U 3

1 ]. (3.7)

Proof Note that x−2 ≥ 3 − 2x for x ∈ (0,∞). Thus, we have that

P

[
U1U2

U 2
: U > 0

]

≥ P [U1U2(3 − 2U) : U > 0] = P [U1U2(3 − 2U)]

= P [U1U2(1 − 2(U − 1))] = m1m2 − 2P [U1U2(U − 1)] ,

P [U1U2(U − 1)] = P [U1U2(U1 − m1)] + P [U1U2(U2 − m2)]

= m2var(U1) + m1var(U2).

These prove (3.6). Similarly,

P

[
U 2

1

U 2
: U > 0

]

≥ P
[
U 2

1 (3 − 2U) : U > 0
] = P

[
U 2

1 (3 − 2U)
]

= P
[
U 2

1

]− 2P
[
U 2

1 (U − 1)
]
,

P
[
U 2

1 (U − 1)
] = P

[
U 2

1 (U1 − m1)
] = P

[
U 3

1

]− m1P
[
U 2

1

]
.

These prove (3.7). �

We introduce

ρt,1 = ρt ∗ a, Rt,1 = |ρ2
t,1|, (3.8)

where a(x) = a(x)/|a|, x ∈ Z
d .

We will make a series of estimates on quantities involving a(x), ρt (x), Rt , and so on.
In the sequel, multiplicative constants are denoted by c, c1, c2, . . . . We agree that they are
non-random constants which do not depend on time variables t, s, . . . ∈ N or space variables
x, y, . . . ∈ Z

d .

Lemma 3.2.2 For any t ∈ N,

Rt,1 ≤ Rt ≤ |a|2
|a2| Rt,1. (3.9)
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Proof Let a(x) = a(x)/|a|, x ∈ Z
d . We then have

|ρ2
t,1| = |(ρt ∗ a)2| ≤ |ρ2

t |

by Young’s inequality. This proves the first inequality. On the other hand,

|ρ2
t,1| = |(ρt ∗ a)2| =

∑

x∈Zd

(∑

y∈Zd

ρt (x − y)a(y)

)2

≥
∑

x∈Zd

∑

y∈Zd

ρt (x − y)2a(y)2 = |ρ2
t ||a2|,

which proves the second inequality. �

We assume (1.22) from here on.

Lemma 3.2.3 There is a constant c ∈ (0,∞) such that the following hold:

P
[
ρt (y)ρt (ỹ )|Ft−1

]

≥ ρt−1,1(y)ρt−1,1(ỹ ) − cρt−1,1(y)ρt−1,1(ỹ )2 − cρt−1,1(ỹ )ρt−1,1(y)2, (3.10)

for all t ∈ N
∗, y, ỹ ∈ Z

d with y 	= ỹ.

P
[

Rt |Ft−1

] ≥ γ Rt−1,1 − cR3/2
t−1,1 for all t ∈ N

∗. (3.11)

Proof Let Ut = ∑
y∈Zd Ut,y , where Ut,y = 1

|a|
∑

x∈Zd ρt−1(x)At,x,y . Then, {Ut,y}y∈Zd are
independent under P (·|Ft−1). Moreover, it is not difficult to see that (cf. proof of
[18, Lemma 3.2.2]), on the event {|Nt−1| > 0},

(1) P [Ut,y |Ft−1] = ρt−1,1(y), P [Ut |Ft−1] = 1,

(2) P [U 2
t,y |Ft−1] = 1

|a|2
∑

x1,x2,y∈Zd

ρt−1(x1)ρt−1(x2)P [At,x1,yAt,x2,y],

(3) P [Um
t,y |Ft−1] ≤ c1ρt,1(y)m, m = 2,3.

Since

ρt (y)ρt (ỹ ) = (Ut,yUt,̃y/Ut )1{|Nt−1|>0}

and {Ut > 0} ⊂ {|Nt−1| > 0}, we see from (1), (3) above and Lemma 3.2.1 that (3.10) holds
and that

(4) P
[
ρt (y)2|Ft−1

] ≥ P [U 2
t,y |Ft−1] − 2c1ρt−1,1(y)3.

To prove (3.11), note that

(5)
∑

y∈Zd

ρt−1,1(y)3 ≤
(∑

y∈Zd

ρt−1,1(y)2

)3/2

= R3/2
t−1,1.



Localization for Linear Stochastic Evolutions 615

We then see that

P
[

Rt |Ft−1

] (4)≥
∑

y∈Zd

(
P [U 2

t,y |Ft−1] − 2c1ρt−1,1(y)3
)

(2),(5)≥ 1

|a|2
∑

x1,x2,y∈Zd

ρt−1(x1)ρt−1(x2)P [At,x1,yAt,x2,y] − 2c1 R3/2
t−1,1

(1.22)≥ γ

|a|2
∑

x1,x2,y∈Zd

ρt−1(x1)ρt−1(x2)a(y − x1)a(y − x2) − 2c1 R3/2
t−1,1

= γ Rt−1,1 − 2c1 R3/2
t−1,1. �

Proof of Lemma 3.1.1

P [Xt |Ft−1] =
∑

y,̃y∈Zd

g(y − ỹ )P [ρt (y)ρt (ỹ )|Ft−1] = I + J,

where I and J are diagonal and off-diagonal terms:

I = g(0)
∑

y∈Zd

P [ρt (y)2|Ft−1],

J =
∑

y,̃y∈Zd

y 	=ỹ

g(y − ỹ )P [ρt (y)ρt (ỹ )|Ft−1].

We start with the lower bound for I .

(1) I = g(0)P [Rt |Ft−1]
(3.11)≥ g(0)γ Rt−1,1 − g(0)cR3/2

t−1,1.

As for J , we have

J
(3.10)≥ J1,1 − cJ1,2 − cJ2,1,

where

Jm,n =
∑

y,̃y∈Zd

y 	=ỹ

g(y − ỹ )ρt−1,1(y)mρt−1,1(ỹ )n.

J1,1 can be computed exactly:

(2) J1,1 =
( ∑

y,̃y∈Zd

−
∑

y,̃y∈Zd

y=ỹ

)

g(y − ỹ )ρt−1,1(y)ρt−1,1(ỹ )

= 〈g ∗ b ∗ ρt−1, ρt−1〉 − g(0)Rt−1,1.

To bound J1,2 from above, note that

max
x∈Zd

(g ∗ ρt−1,1)(x) ≤ |g|max
x∈Zd

ρt−1,1(x) ≤ |g|R1/2
t−1,1.
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Thus,

J1,2 ≤ 〈g ∗ ρt−1,1, ρ
2
t−1,1〉 ≤ max

x∈Zd
(g ∗ ρt−1,1)(x)R1,t−1 ≤ |g|R3/2

t−1,1.

Similarly, J2,1 ≤ |g|R3/2
t−1,1. Putting things together, we see that

(3) �At = P [Xt |Ft−1] − Xt−1 ≥ I + J1,1 − Xt−1 − 2c|g|R3/2
t−1,1

(1)–(2)≥ (γ − 1)g(0)Rt−1,1 + 〈(g ∗ b − g) ∗ ρt−1, ρt−1〉 − 3|g|cR3/2
t−1,1.

Note that g ∗ b − g = bt0+1 − b ≥ −b and hence that

(4) 〈(g ∗ b − g) ∗ ρt−1, ρt−1〉 ≥ −〈b ∗ ρt−1, ρt−1〉 = −Rt−1,1.

Therefore,

�At

(3)–(4)≥ ((γ − 1)g(0) − 1)Rt−1,1 − 3|g|cR3/2
t−1,1

(3.2)≥ εRt−1,1 − 3|g|cR3/2
t−1,1.

We now get Lemma 3.1.1 from this and (3.9). �

3.3 Proof of Lemma 3.1.2

We have
{ ∑

1≤u<∞
Ru = ∞, 〈M〉∞ < ∞

}
(2.7)⊂

{

lim
t→∞

Mt
∑

1≤u≤t Ru

= 0

}

a.s.

To treat the case of 〈M〉∞ = ∞, we show that

(1) 〈M〉t ≤ 4|g|2
∑

1≤u≤t

(Ru−1 + P [Ru|Fu−1]) .

We have

(2) |�Xt |2
(3.4)≤ 2|g|2(R2

t + R2
t−1) ≤ 2|g|2(Rt + Rt−1),

and

(3) (�At)
2 Schwarz≤ P [(�Xt)

2|Ft−1]
(2)≤ 2|g|2(P [Rt |Ft−1] + Rt−1).

Thus,

�〈M〉t = P [(�Mt)
2|Ft−1] ≤ 2P [(�Xt)

2|Ft−1] + 2(�At)
2

(3)≤ 4|g|2(P [Rt |Ft−1] + Rt−1).

Now, we have by Lemma 2.2.1 and (1) that
{ ∑

1≤u<∞
Ru = ∞

}
(2.10)=

{ ∑

1≤u<∞
P [Ru|Fu−1] = ∞

}

a.s.

(2.12)=
{

lim
t→∞

∑
1≤u≤t Ru

∑
1≤u≤t P [Ru|Fu−1] = 1

}

a.s.
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(1)⊂
{

lim
t→∞

∑
1≤u≤t Ru

〈M〉t ≥ 1

4|g|2
}

.

We see from this and (2.8) that
{ ∑

1≤u<∞
Ru = ∞, 〈M〉∞ = ∞

}

⊂
{

lim
t→∞

Mt
∑

1≤u≤t Ru

= 0

}

a.s.

This completes the proof of Lemma 3.1.2.

3.4 Proof of Theorem 1.4.3

We now state a criterion for the regular growth phase (Lemma 3.4.1). The criterion is an
extension of the one obtained by M. Birkner [3] for DPRE.

Let ((St )t∈N,P x
S ) be the random walk defined by (1.28) and let (S̃t )t∈N be its independent

copy. Since the random variable:

V∞(S, S̃) =
∑

t≥1

1{St =S̃t }

is geometrically distributed with the parameter πd , we have

1

πd

= sup
{
α ≥ 1; P 0

S ⊗ P 0
S̃

[
αV∞(S,S̃)

]
< ∞}

. (3.12)

We now define π∗
d by:

1

π∗
d

= sup
{
α ≥ 1; P 0

S̃

[
αV∞(S,S̃)

]
< ∞ P 0

S -a.s.
}
. (3.13)

Therefore, π∗
d ≤ πd in general. Moreover, the inequality is known to be strict if d ≥ 3 and

(1.33) is satisfied [2, p. 82, Corollary 4].

Lemma 3.4.1 Suppose d ≥ 3 and (1.34). Then,

P [η2
t,y] <

1

π∗
d

⇒ P [|N∞|] = 1.

Proof Because of (1.34), we have that

Nt,x = |a|tP 0
S

[
t∏

u=1

ηu,Su

]

.

Using this expression, we can repeat the argument in [3] without change. (Here, unlike the
DPRE case, we may have P (ηt,y = 0) > 0. However, this does not cause any problem as far
as to prove this lemma.) �

Proof of Theorem 1.4.3 (1.32) ⊂: Note that π∗
d < πd if d ≥ 3 and (1.33) is satisfied. If

|N∞| = 0 a.s., then we have by Lemma 3.4.1 that γ ≥ 1
π∗

d
> 1

πd
. Thus, we can apply Theo-

rems 1.4.1 and 1.4.2.
(1.32) ⊃: Obvious. �
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